Java基础-异常

Java基础-异常

1.Java中的异常

异常处理方式

程序处理过程中会遇到各种各样的意外,例如打开的文件不存在、用户输入的数据格式不正确等,因此我们必须想办法保证程序的健壮性,你想到的 Java 都想到了,不然怎么说 Java 是一门健壮性强的编程语言呢。

调用方如何获知调用失败的信息?有两种方法:

==方法一:约定返回错误码。==

例如,处理一个文件,如果返回0,表示成功,返回其他整数,表示约定的错误码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
int code = processFile("C:\\test.txt");
if (code == 0) {
// ok:
} else {
// error:
switch (code) {
case 1:
// file not found:
case 2:
// no read permission:
default:
// unknown error:
}
}

因为使用int类型的错误码,想要处理就非常麻烦。这种方式常见于底层 C 函数

==方法二:在语言层面上提供一个异常处理机制。==

Java内置了一套异常处理机制,总是使用异常来表示错误。

异常是一种class,因此它本身带有类型信息。异常可以在任何地方抛出,但只需要在上层捕获,这样就和方法调用分离了:

1
2
3
4
5
6
7
8
9
10
11
12
try {
String s = processFile(“C:\\test.txt”);
// ok:
} catch (FileNotFoundException e) {
// file not found:
} catch (SecurityException e) {
// no read permission:
} catch (IOException e) {
// io error:
} catch (Exception e) {
// other error:
}

Java的异常类

因为Java的异常是class,它的继承关系如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
                     ┌───────────┐
│ Object │
└───────────┘


┌───────────┐
│ Throwable │
└───────────┘

┌─────────┴─────────┐
│ │
┌───────────┐ ┌───────────┐
│ Error │ │ Exception │
└───────────┘ └───────────┘
▲ ▲
┌───────┘ ┌────┴──────────┐
│ │ │
┌─────────────────┐ ┌─────────────────┐┌───────────┐
│OutOfMemoryError │... │RuntimeException ││IOException│...
└─────────────────┘ └─────────────────┘└───────────┘

┌───────────┴─────────────┐
│ │
┌─────────────────────┐ ┌─────────────────────────┐
│NullPointerException │ │IllegalArgumentException │...
└─────────────────────┘ └─────────────────────────┘

从继承关系可知:Throwable是异常体系的根,它继承自ObjectThrowable有两个体系:ErrorExceptionError表示严重的错误,程序对此一般无能为力,例如:

  • OutOfMemoryError:内存耗尽
  • NoClassDefFoundError:无法加载某个Class
  • StackOverflowError:栈溢出

Exception则是运行时的错误,它可以被捕获并处理。

某些异常是应用程序逻辑处理的一部分,应该捕获并处理。例如:

  • NumberFormatException:数值类型的格式错误
  • FileNotFoundException:未找到文件
  • SocketException:读取网络失败

还有一些异常是程序逻辑编写不对造成的,应该修复程序本身。例如:

  • NullPointerException:对某个null的对象调用方法或字段
  • IndexOutOfBoundsException:数组索引越界

Exception又分为两大类:

  1. RuntimeException以及它的子类;
  2. RuntimeException(包括IOExceptionReflectiveOperationException等等)

Java规定:

  • 必须捕获的异常,包括Exception及其子类,但不包括RuntimeException及其子类,这种类型的异常称为Checked Exception
  • 不需要捕获的异常,包括Error及其子类,RuntimeException及其子类。

注意:编译器对RuntimeException及其子类不做强制捕获要求,不是指应用程序本身不应该捕获并处理RuntimeException。是否需要捕获,具体问题具体分析。

如何捕获异常

捕获异常使用try...catch语句,把可能发生异常的代码放到try {...}中,然后使用catch捕获对应的Exception及其子类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
import java.io.UnsupportedEncodingException;
import java.util.Arrays;

public class ExceptionTest1 {
public static void main(String[] args) {
byte[] bs = toGBK("中文");
System.out.println(Arrays.toString(bs));
}

static byte[] toGBK(String s) {
try {
// 用指定编码转换String为byte[]:
return s.getBytes("GBK");
} catch (UnsupportedEncodingException e) {
// 如果系统不支持GBK编码,会捕获到UnsupportedEncodingException:
System.out.println(e); // 打印异常信息
return s.getBytes(); // 尝试使用用默认编码
}
}
}

如果我们不捕获UnsupportedEncodingException,会出现编译失败的问题。

编译器会报错,错误信息类似:unreported exception UnsupportedEncodingException; must be caught or declared to be thrown,并且准确地指出需要捕获的语句是return s.getBytes("GBK");。意思是说,像UnsupportedEncodingException这样的Checked Exception,必须被捕获。

这是因为String.getBytes(String)方法定义是:

1
2
3
public byte[] getBytes(String charsetName) throws UnsupportedEncodingException {
...
}

在方法定义的时候,使用throws Xxx表示该方法可能抛出的异常类型。调用方在调用的时候,必须强制捕获这些异常,否则编译器会报错。

toGBK()方法中,因为调用了String.getBytes(String)方法,就必须捕获UnsupportedEncodingException。我们也可以不捕获它,而是在方法定义处用throws表示toGBK()方法可能会抛出UnsupportedEncodingException,就可以让toGBK()方法通过编译器检查:

1
2
3
4
5
6
7
8
9
10
11
12
13
import java.io.UnsupportedEncodingException;
import java.util.Arrays;

public class Main {
public static void main(String[] args) {
byte[] bs = toGBK("中文");
System.out.println(Arrays.toString(bs));
}

static byte[] toGBK(String s) throws UnsupportedEncodingException {
return s.getBytes("GBK");
}
}

上述代码仍然会得到编译错误,但这一次,编译器提示的不是调用return s.getBytes("GBK");的问题,而是byte[] bs = toGBK("中文");。因为在main()方法中,调用toGBK(),没有捕获它声明的可能抛出的UnsupportedEncodingException

修复方法是在main()方法中捕获异常并处理:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import java.io.UnsupportedEncodingException;
import java.util.Arrays;

public class Main {
public static void main(String[] args) {
try {
byte[] bs = toGBK("中文");
System.out.println(Arrays.toString(bs));
} catch (UnsupportedEncodingException e) {
System.out.println(e);
}
}

static byte[] toGBK(String s) throws UnsupportedEncodingException {
// 用指定编码转换String为byte[]:
return s.getBytes("GBK");
}
}

可见,只要是方法声明的Checked Exception,不在调用层捕获,也必须在更高的调用层捕获。所有未捕获的异常,最终也必须在main()方法中捕获,不会出现漏写try的情况。这是由编译器保证的。main()方法也是最后捕获Exception的机会。

如果是测试代码,上面的写法就略显麻烦。如果不想写任何try代码,可以直接把main()方法定义为throws Exception

1
2
3
4
5
6
7
8
9
10
11
12
13
14
import java.io.UnsupportedEncodingException;
import java.util.Arrays;

public class Main {
public static void main(String[] args) throws Exception {
byte[] bs = toGBK("中文");
System.out.println(Arrays.toString(bs));
}

static byte[] toGBK(String s) throws UnsupportedEncodingException {
// 用指定编码转换String为byte[]:
return s.getBytes("GBK");
}
}

因为main()方法声明了可能抛出Exception,也就声明了可能抛出所有的Exception,因此在内部就无需捕获了。代价就是一旦发生异常,程序会立刻退出。

2.捕获异常

在Java中,凡是可能抛出异常的语句,都可以用try ... catch捕获。把可能发生异常的语句放在try { ... }中,然后使用catch捕获对应的Exception及其子类。

多catch语句

可以使用多个catch语句,每个catch分别捕获对应的Exception及其子类。JVM 在捕获到异常后,会从上到下匹配catch语句,匹配到某个catch后,执行catch代码块,然后不再继续匹配。

简单地说就是:多个catch语句只有一个能被执行。例如:

1
2
3
4
5
6
7
8
9
10
11
public static void main(String[] args) {
try {
process1();
process2();
process3();
} catch (IOException e) {
System.out.println(e);
} catch (NumberFormatException e) {
System.out.println(e);
}
}

存在多个catch的时候,catch的顺序非常重要:子类必须写在前面。例如:

1
2
3
4
5
6
7
8
9
10
11
public static void main(String[] args) {
try {
process1();
process2();
process3();
} catch (IOException e) {
System.out.println("IO error");
} catch (UnsupportedEncodingException e) { // 永远捕获不到
System.out.println("Bad encoding");
}
}

对于上面的代码,UnsupportedEncodingException异常是永远捕获不到的,因为它是IOException的子类。当抛出UnsupportedEncodingException异常时,会被catch (IOException e) { ... }捕获并执行。

因此,正确的写法是把子类放到前面:

1
2
3
4
5
6
7
8
9
10
11
public static void main(String[] args) {
try {
process1();
process2();
process3();
} catch (UnsupportedEncodingException e) {
System.out.println("Bad encoding");
} catch (IOException e) {
System.out.println("IO error");
}
}

finally语句

无论是否有异常发生,如果我们都希望执行一些语句,例如清理工作,怎么写?

可以把执行语句写若干遍:正常执行的放到try中,每个catch再写一遍。例如:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public static void main(String[] args) {
try {
process1();
process2();
process3();
System.out.println("END");
} catch (UnsupportedEncodingException e) {
System.out.println("Bad encoding");
System.out.println("END");
} catch (IOException e) {
System.out.println("IO error");
System.out.println("END");
}
}

上述代码无论是否发生异常,都会执行System.out.println("END");这条语句。

那么如何消除这些重复的代码?Java的try ... catch机制还提供了finally语句,finally语句块保证有无错误都会执行。上述代码可以改写如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
public static void main(String[] args) {
try {
process1();
process2();
process3();
} catch (UnsupportedEncodingException e) {
System.out.println("Bad encoding");
} catch (IOException e) {
System.out.println("IO error");
} finally {
System.out.println("END");
}
}

注意finally有几个特点:

  1. finally语句不是必须的,可写可不写;
  2. finally总是最后执行。

如果没有发生异常,就正常执行try { ... }语句块,然后执行finally。如果发生了异常,就中断执行try { ... }语句块,然后跳转执行匹配的catch语句块,最后执行finally

可见,finally是用来保证一些代码必须执行的。

某些情况下,可以没有catch,只使用try ... finally结构。例如:

1
2
3
4
5
6
7
void process(String file) throws IOException {
try {
...
} finally {
System.out.println("END");
}
}

因为方法声明了可能抛出的异常,所以可以不写catch

捕获多种异常

如果某些异常的处理逻辑相同,但是异常本身不存在继承关系,那么就得编写多条catch子句:

1
2
3
4
5
6
7
8
9
10
11
12
13
public static void main(String[] args) {
try {
process1();
process2();
process3();
} catch (IOException e) {
System.out.println("Bad input");
} catch (NumberFormatException e) {
System.out.println("Bad input");
} catch (Exception e) {
System.out.println("Unknown error");
}
}

因为处理IOExceptionNumberFormatException的代码是相同的,所以我们可以把它两用|合并到一起:

1
2
3
4
5
6
7
8
9
10
11
public static void main(String[] args) {
try {
process1();
process2();
process3();
} catch (IOException | NumberFormatException e) { // IOException或NumberFormatException
System.out.println("Bad input");
} catch (Exception e) {
System.out.println("Unknown error");
}
}

3.抛出异常

异常的传播

当某个方法抛出了异常时,如果当前方法没有捕获异常,异常就会被抛到上层调用方法,直到遇到某个try ... catch被捕获为止:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class Main {
public static void main(String[] args) {
try {
process1();
} catch (Exception e) {
e.printStackTrace();
}
}

static void process1() {
process2();
}

static void process2() {
// 会抛出NumberFormatException
// 但是该异常属于RuntimeException的子类,编程规范不强制要求捕获,因此可以既不进行try...catch捕获,也 不使用throws抛出异常
Integer.parseInt(null);
}
}

image-20230814171140475

printStackTrace()对于调试错误非常有用,上述信息表示:NumberFormatException是在java.lang.Integer.parseInt方法中被抛出的,从下往上看,调用层次依次是:

  1. main()调用process1()
  2. process1()调用process2()
  3. process2()调用Integer.parseInt(String)
  4. Integer.parseInt(String)调用Integer.parseInt(String, int)

查看Integer.java源码可知,抛出异常的方法代码如下:

1
2
3
4
5
6
public static int parseInt(String s, int radix) throws NumberFormatException {
if (s == null) {
throw new NumberFormatException("null");
}
...
}

在IDEA中直接点击行号链接便可以跳转到异常发生位置。

抛出异常

当发生错误时,例如,用户输入了非法的字符,我们就可以抛出异常。

如何抛出异常?参考Integer.parseInt()方法,抛出异常分两步:

  1. 创建某个Exception的实例;
  2. throw语句抛出。
1
2
3
4
5
6
void process2(String s) {
if (s==null) {
NullPointerException e = new NullPointerException();
throw e;
}
}

实际上,绝大部分抛出异常的代码都会合并写成一行:

1
2
3
4
5
void process2(String s) {
if (s==null) {
throw new NullPointerException();
}
}

如果一个方法捕获了某个异常后,又在catch子句中抛出新的异常,就相当于把抛出的异常类型“转换”了:

1
2
3
4
5
6
7
8
9
10
11
12
13
void process1(String s) {
try {
process2();
} catch (NullPointerException e) {
throw new IllegalArgumentException();
}
}

void process2(String s) {
if (s==null) {
throw new NullPointerException();
}
}

process2()抛出NullPointerException后,被process1()捕获,然后抛出IllegalArgumentException()

如果在main()中捕获IllegalArgumentException,我们看看打印的异常栈:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public class Main {
public static void main(String[] args) {
try {
process1();
} catch (Exception e) {
e.printStackTrace();
}
}

static void process1() {
try {
process2();
} catch (NullPointerException e) {
throw new IllegalArgumentException();
}
}

static void process2() {
throw new NullPointerException();
}
}

image-20230814171047979

这说明新的异常丢失了原始异常信息,我们已经看不到原始异常NullPointerException的信息了。

为了能追踪到完整的异常栈,在构造异常的时候,把原始的Exception实例传进去,新的Exception就可以持有原始Exception信息。对上述代码改进如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public class Main {
public static void main(String[] args) {
try {
process1();
} catch (Exception e) {
e.printStackTrace();
}
}

static void process1() {
try {
process2();
} catch (NullPointerException e) {
throw new IllegalArgumentException(e);
}
}

static void process2() {
throw new NullPointerException();
}
}

image-20230814171513387

注意到Caused by: Xxx,说明捕获的IllegalArgumentException并不是造成问题的根源,根源在于NullPointerException,是在Main.process2()方法抛出的。

在代码中获取原始异常可以使用Throwable.getCause()方法。如果返回null,说明已经是“根异常”了。有了完整的异常栈的信息,我们才能快速定位并修复代码的问题。

捕获到异常并再次抛出时,一定要留住原始异常,否则很难定位第一案发现场!

如果我们在try或者catch语句块中抛出异常,finally语句是否会执行?例如:

1
2
3
4
5
6
7
8
9
10
11
12
public class Main {
public static void main(String[] args) {
try {
Integer.parseInt("abc");
} catch (Exception e) {
System.out.println("catched");
throw new RuntimeException(e);
} finally {
System.out.println("finally");
}
}
}

image-20230814171847490

第一行打印了catched,说明进入了catch语句块。第二行打印了finally,说明执行了finally语句块。

因此,在catch中抛出异常,不会影响finally的执行。JVM会先执行finally,然后抛出异常。

异常屏蔽

如果在执行finally语句时抛出异常,那么,catch语句的异常还能否继续抛出?例如:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Main {
public static void main(String[] args) {
try {
Integer.parseInt("abc");
} catch (Exception e) {
System.out.println("catched");
throw new RuntimeException(e);
} finally {
System.out.println("finally");
throw new IllegalArgumentException();
}
}
}

image-20230814172026732

这说明finally抛出异常后,原来在catch中准备抛出的异常就“消失”了,因为只能抛出一个异常。没有被抛出的异常称为“被屏蔽”的异常(Suppressed Exception)。

在极少数的情况下,我们需要获知所有的异常。如何保存所有的异常信息?方法是先用origin变量保存原始异常,然后调用Throwable.addSuppressed(),把原始异常添加进来,最后在finally抛出:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class Main {
public static void main(String[] args) throws Exception {
Exception origin = null;
try {
System.out.println(Integer.parseInt("abc"));
} catch (Exception e) {
origin = e;
throw e;
} finally {
Exception e = new IllegalArgumentException();
if (origin != null) {
e.addSuppressed(origin);
}
throw e;
}
}
}

catchfinally都抛出了异常时,虽然catch的异常被屏蔽了,但是,finally抛出的异常仍然包含了它:

image-20230814172445222

通过Throwable.getSuppressed()可以获取所有的Suppressed Exception。绝大多数情况下,在finally中不要抛出异常。因此,我们通常不需要关心Suppressed Exception

4.自定义异常

Java标准库定义的常用异常包括:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
Exception

├─ RuntimeException
│ │
│ ├─ NullPointerException
│ │
│ ├─ IndexOutOfBoundsException
│ │
│ ├─ SecurityException
│ │
│ └─ IllegalArgumentException
│ │
│ └─ NumberFormatException

├─ IOException
│ │
│ ├─ UnsupportedCharsetException
│ │
│ ├─ FileNotFoundException
│ │
│ └─ SocketException

├─ ParseException

├─ GeneralSecurityException

├─ SQLException

└─ TimeoutException

当我们在代码中需要抛出异常时,尽量使用JDK已定义的异常类型。例如,参数检查不合法,应该抛出IllegalArgumentException

1
2
3
4
5
static void process1(int age) {
if (age <= 0) {
throw new IllegalArgumentException();
}
}

在一个大型项目中,可以自定义新的异常类型,但是,保持一个合理的异常继承体系是非常重要的。

一个常见的做法是自定义一个BaseException作为“根异常”,然后,派生出各种业务类型的异常。

BaseException需要从一个适合的Exception派生,通常建议从RuntimeException派生:

1
2
public class BaseException extends RuntimeException {
}

其他业务类型的异常就可以从BaseException派生:

1
2
3
4
5
6
7
public class UserNotFoundException extends BaseException {
}

public class LoginFailedException extends BaseException {
}

...

自定义的BaseException应该提供多个构造方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class BaseException extends RuntimeException {
public BaseException() {
super();
}

public BaseException(String message, Throwable cause) {
super(message, cause);
}

public BaseException(String message) {
super(message);
}

public BaseException(Throwable cause) {
super(cause);
}
}

上述构造方法实际上都是原样照抄RuntimeException。这样,抛出异常的时候,就可以选择合适的构造方法。通过IDE可以根据父类快速生成子类的构造方法。

5.NullPointerException

在所有的RuntimeException异常中,Java程序员最熟悉的恐怕就是NullPointerException了。

NullPointerException即空指针异常,俗称NPE。如果一个对象为null,调用其方法或访问其字段就会产生NullPointerException,这个异常通常是由JVM抛出的,例如:

1
2
3
4
5
6
public class Main {
public static void main(String[] args) {
String s = null;
System.out.println(s.toLowerCase());
}
}

指针这个概念实际上源自C语言,Java语言中并无指针。我们定义的变量实际上是引用,Null Pointer更确切地说是Null Reference,不过两者区别不大。

处理NullPointerException

如果遇到NullPointerException,我们应该如何处理?首先,必须明确,NullPointerException是一种代码逻辑错误,遇到NullPointerException,遵循原则是早暴露,早修复,严禁使用catch来隐藏这种编码错误:

1
2
3
4
5
// 错误示例: 捕获NullPointerException
try {
transferMoney(from, to, amount);
} catch (NullPointerException e) {
}

好的编码习惯可以极大地降低NullPointerException的产生,例如:

成员变量在定义时初始化:

1
2
3
public class Person {
private String name = "";
}

使用空字符串""而不是默认的null可避免很多NullPointerException,编写业务逻辑时,用空字符串""表示未填写比null安全得多。

返回空字符串""、空数组而不是null

1
2
3
4
5
6
7
public String[] readLinesFromFile(String file) {
if (getFileSize(file) == 0) {
// 返回空数组而不是null:
return new String[0];
}
...
}

这样可以使得调用方无需检查结果是否为null

如果调用方一定要根据null判断,比如返回null表示文件不存在,那么考虑返回Optional<T>

1
2
3
4
5
6
public Optional<String> readFromFile(String file) {
if (!fileExist(file)) {
return Optional.empty();
}
...
}

这样调用方必须通过Optional.isPresent()判断是否有结果。

定位NullPointerException

如果产生了NullPointerException,例如,调用a.b.c.x()时产生了NullPointerException,原因可能是:

  • anull
  • a.bnull
  • a.b.cnull

确定到底是哪个对象是null以前只能打印这样的日志:

1
2
3
System.out.println(a);
System.out.println(a.b);
System.out.println(a.b.c);

从Java 14开始,如果产生了NullPointerException,JVM可以给出详细的信息告诉我们null对象到底是谁。我们来看例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class Main {
public static void main(String[] args) {
Person p = new Person();
System.out.println(p.address.city.toLowerCase());
}
}

class Person {
String[] name = new String[2];
Address address = new Address();
}

class Address {
String city;
String street;
String zipcode;
}

可以在NullPointerException的详细信息中看到类似... because "<local1>.address.city" is null,意思是city字段为null,这样我们就能快速定位问题所在。

这种增强的NullPointerException详细信息是Java 14新增的功能,但默认是关闭的,我们可以给JVM添加一个-XX:+ShowCodeDetailsInExceptionMessages参数启用它:

1
java -XX:+ShowCodeDetailsInExceptionMessages Main.java

6.使用断言

断言(Assertion)是一种调试程序的方式。在Java中,使用assert关键字来实现断言。

1
2
3
double x = Math.abs(-123.45);
assert x < 0;
System.out.println(x);

语句assert x >= 0;即为断言,断言条件x >= 0预期为true。如果计算结果为false,则断言失败,抛出AssertionError

使用assert语句时,还可以添加一个可选的断言消息:

1
assert x >= 0 : "x must >= 0";

这样,断言失败的时候,AssertionError会带上消息x must >= 0,更加便于调试。

Java断言的特点是:断言失败时会抛出AssertionError,导致程序结束退出。因此,断言不能用于可恢复的程序错误,只应该用于开发和测试阶段。

对于可恢复的程序错误,不应该使用断言。例如:

1
2
3
void sort(int[] arr) {
assert arr != null;
}

应该抛出异常并在上层捕获:

1
2
3
4
5
void sort(int[] arr) {
if (arr == null) {
throw new IllegalArgumentException("array cannot be null");
}
}

当我们在程序中使用assert时,例如,一个简单的断言:

1
2
3
4
5
6
7
public class Main {
public static void main(String[] args) {
int x = -1;
assert x > 0;
System.out.println(x);
}
}

断言x必须大于0,实际上x-1,断言肯定失败。执行上述代码,发现程序并未抛出AssertionError,而是正常打印了x的值。

这是怎么肥四?为什么assert语句不起作用?

这是因为JVM默认关闭断言指令,即遇到assert语句就自动忽略了,不执行。

要执行assert语句,必须给Java虚拟机传递-enableassertions(可简写为-ea)参数启用断言。所以,上述程序必须在命令行下运行才有效果:

image-20230814184029528

还可以有选择地对特定地类启用断言,命令行参数是:-ea:com.itranswarp.sample.Main,表示只对com.itranswarp.sample.Main这个类启用断言。或者对特定地包启用断言,命令行参数是:-ea:com.itranswarp.sample...(注意结尾有3个.),表示对com.itranswarp.sample这个包启动断言。

实际开发中,很少使用断言。更好的方法是编写单元测试,后续我们会讲解JUnit的使用。

7.JDK Logging

在编写程序的过程中,发现程序运行结果与预期不符,怎么办?当然是用System.out.println()打印出执行过程中的某些变量,观察每一步的结果与代码逻辑是否符合,然后有针对性地修改代码。

代码改好了怎么办?当然是删除没有用的System.out.println()语句了。如果改代码又改出问题怎么办?再加上System.out.println()

反复这么搞几次,很快大家就发现使用System.out.println()非常麻烦。怎么办?

解决方法是使用日志

那什么是日志?日志就是Logging,它的目的是为了取代System.out.println()

输出日志,而不是用System.out.println(),有以下几个好处:

  1. 可以设置输出样式,避免自己每次都写"ERROR: " + var
  2. 可以设置输出级别,禁止某些级别输出。例如,只输出错误日志;
  3. 可以被重定向到文件,这样可以在程序运行结束后查看日志;
  4. 可以按包名控制日志级别,只输出某些包打的日志;
  5. 可以……

总之就是好处很多啦。那如何使用日志?

因为Java标准库内置了日志包java.util.logging,我们可以直接用。先看一个简单的例子:

1
2
3
4
5
6
7
8
9
10
11
import java.util.logging.Logger;

public class Hello {
public static void main(String[] args) {
Logger logger = Logger.getGlobal();
logger.info("start process...");
logger.warning("memory is running out...");
logger.fine("ignored.");
logger.severe("process will be terminated...");
}
}

image-20230814193435784

对比可见,使用日志最大的好处是,它自动打印了时间、调用类、调用方法等很多有用的信息。

再仔细观察发现,4条日志,只打印了3条,logger.fine()没有打印。这是因为,日志的输出可以设定级别。JDK的Logging定义了7个日志级别,从严重到普通:

  • SEVERE
  • WARNING
  • INFO
  • CONFIG
  • FINE
  • FINER
  • FINEST

因为默认级别是INFO,因此,INFO级别以下的日志,不会被打印出来。使用日志级别的好处在于,调整级别,就可以屏蔽掉很多调试相关的日志输出。使用Java标准库内置的Logging有以下局限:

  • Logging系统在JVM启动时读取配置文件并完成初始化,一旦开始运行main()方法,就无法修改配置;
  • 配置不太方便,需要在JVM启动时传递参数-Djava.util.logging.config.file=<config-file-name>

因此,Java标准库内置的Logging使用并不是非常广泛。更方便的日志系统我们稍后介绍。

8.Commons Logging

和Java标准库提供的日志不同,Commons Logging是一个第三方日志库,它是由Apache创建的日志模块。

Commons Logging的特色是,它可以挂接不同的日志系统,并通过配置文件指定挂接的日志系统。默认情况下,Commons Loggin自动搜索并使用Log4j(Log4j是另一个流行的日志系统),如果没有找到Log4j,再使用JDK Logging。

使用Commons Logging只需要和两个类打交道,并且只有两步:

第一步,通过LogFactory获取Log类的实例; 第二步,使用Log实例的方法打日志。

1
2
3
4
5
6
7
8
9
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
public class Main {
public static void main(String[] args) {
Log log = LogFactory.getLog(CommonsLoggingTest.class);
log.info("start...");
log.warn("end.");
}
}

运行上述代码,肯定会得到编译错误,类似error: package org.apache.commons.logging does not exist(找不到org.apache.commons.logging这个包)。因为Commons Logging是一个第三方提供的库,所以,必须先把它下载下来。下载后,解压,找到commons-logging-1.2.jar这个文件,再把Java源码Main.java放到一个目录下,例如work目录:

1
2
3
4
5
work

├─ commons-logging-1.2.jar

└─ Main.java

然后用javac编译Main.java,编译的时候要指定classpath,不然编译器找不到我们引用的org.apache.commons.logging包。编译命令如下:

1
javac -cp commons-logging-1.2.jar Main.java

如果编译成功,那么当前目录下就会多出一个Main.class文件:

1
2
3
4
5
6
7
work

├─ commons-logging-1.2.jar

├─ Main.java

└─ Main.class

现在可以执行这个Main.class,使用java命令,也必须指定classpath,命令如下:

1
java -cp .;commons-logging-1.2.jar Main

注意到传入的classpath有两部分:一个是.,一个是commons-logging-1.2.jar,用;分割。.表示当前目录,如果没有这个.,JVM不会在当前目录搜索Main.class,就会报错。如果在Linux或macOS下运行,注意classpath的分隔符不是;,而是:

1
java -cp .:commons-logging-1.2.jar Main

运行结果如下:

image-20230814200836107

Commons Logging定义了6个日志级别:

  • FATAL
  • ERROR
  • WARNING
  • INFO
  • DEBUG
  • TRACE

默认级别是INFO

使用Commons Logging时,如果在静态方法中引用Log,通常直接定义一个静态类型变量:

1
2
3
4
5
6
7
8
// 在静态方法中引用Log:
public class Main {
static final Log log = LogFactory.getLog(Main.class);

static void foo() {
log.info("foo");
}
}

在实例方法中引用Log,通常定义一个实例变量:

1
2
3
4
5
6
7
8
// 在实例方法中引用Log:
public class Person {
protected final Log log = LogFactory.getLog(getClass());

void foo() {
log.info("foo");
}
}

注意到实例变量log的获取方式是LogFactory.getLog(getClass()),虽然也可以用LogFactory.getLog(Person.class),但是前一种方式有个非常大的好处,就是子类可以直接使用该log实例。例如:

1
2
3
4
5
6
// 在子类中使用父类实例化的log:
public class Student extends Person {
void bar() {
log.info("bar");
}
}

由于Java类的动态特性,子类获取的log字段实际上相当于LogFactory.getLog(Student.class),但却是从父类继承而来,并且无需改动代码。

此外,Commons Logging的日志方法,例如info(),除了标准的info(String)外,还提供了一个非常有用的重载方法:info(String, Throwable),这使得记录异常更加简单:

1
2
3
4
5
try {
...
} catch (Exception e) {
log.error("got exception!", e);
}

9.Log4j

前面介绍了Commons Logging,可以作为“日志接口”来使用。而真正的“日志实现”可以使用Log4j。

Log4j是一种非常流行的日志框架,最新版本是2.x。

Log4j是一个组件化设计的日志系统,它的架构大致如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
log.info("User signed in.");

│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐
├──>│ Appender │───>│ Filter │───>│ Layout │───>│ Console │
│ └──────────┘ └──────────┘ └──────────┘ └──────────┘

│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐
├──>│ Appender │───>│ Filter │───>│ Layout │───>│ File │
│ └──────────┘ └──────────┘ └──────────┘ └──────────┘

│ ┌──────────┐ ┌──────────┐ ┌──────────┐ ┌──────────┐
└──>│ Appender │───>│ Filter │───>│ Layout │───>│ Socket │
└──────────┘ └──────────┘ └──────────┘ └──────────┘

当我们使用Log4j输出一条日志时,Log4j自动通过不同的Appender把同一条日志输出到不同的目的地。例如:

  • console:输出到屏幕;
  • file:输出到文件;
  • socket:通过网络输出到远程计算机;
  • jdbc:输出到数据库

在输出日志的过程中,通过Filter来过滤哪些log需要被输出,哪些log不需要被输出。例如,仅输出ERROR级别的日志。最后,通过Layout来格式化日志信息,例如,自动添加日期、时间、方法名称等信息。

上述结构虽然复杂,但我们在实际使用的时候,并不需要关心Log4j的API,而是通过配置文件来配置它。

以XML配置为例,使用Log4j的时候,我们把一个log4j2.xml的文件放到classpath下就可以让Log4j读取配置文件并按照我们的配置来输出日志。下面是一个配置文件的例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
<?xml version="1.0" encoding="UTF-8"?>
<Configuration>
<Properties>
<!-- 定义日志格式 -->
<Property name="log.pattern">%d{MM-dd HH:mm:ss.SSS} [%t] %-5level %logger{36}%n%msg%n%n</Property>
<!-- 定义文件名变量 -->
<Property name="file.err.filename">log/err.log</Property>
<Property name="file.err.pattern">log/err.%i.log.gz</Property>
</Properties>
<!-- 定义Appender,即目的地 -->
<Appenders>
<!-- 定义输出到屏幕 -->
<Console name="console" target="SYSTEM_OUT">
<!-- 日志格式引用上面定义的log.pattern -->
<PatternLayout pattern="${log.pattern}" />
</Console>
<!-- 定义输出到文件,文件名引用上面定义的file.err.filename -->
<RollingFile name="err" bufferedIO="true" fileName="${file.err.filename}" filePattern="${file.err.pattern}">
<PatternLayout pattern="${log.pattern}" />
<Policies>
<!-- 根据文件大小自动切割日志 -->
<SizeBasedTriggeringPolicy size="1 MB" />
</Policies>
<!-- 保留最近10份 -->
<DefaultRolloverStrategy max="10" />
</RollingFile>
</Appenders>
<Loggers>
<Root level="info">
<!-- 对info级别的日志,输出到console -->
<AppenderRef ref="console" level="info" />
<!-- 对error级别的日志,输出到err,即上面定义的RollingFile -->
<AppenderRef ref="err" level="error" />
</Root>
</Loggers>
</Configuration>

虽然配置Log4j比较繁琐,但一旦配置完成,使用起来就非常方便。对上面的配置文件,凡是INFO级别的日志,会自动输出到屏幕,而ERROR级别的日志,不但会输出到屏幕,还会同时输出到文件。并且,一旦日志文件达到指定大小(1MB),Log4j就会自动切割新的日志文件,并最多保留10份。

IDEA中把上面的log4j2.xml文件放入classpath中:

image-20230814203036558

image-20230814203147160

有了配置文件还不够,因为Log4j也是一个第三方库,我们需要从这里下载Log4j,解压后,把以下3个jar包放到classpath中:

  • log4j-api-2.x.jar
  • log4j-core-2.x.jar
  • log4j-jcl-2.x.jar

因为Commons Logging会自动发现并使用Log4j,所以,把上一节下载的commons-logging-1.2.jar也放到classpath中。

image-20230814202944953

要打印日志,只需要按Commons Logging的写法写,不需要改动任何代码,就可以得到Log4j的日志输出,类似:

1
2
3
4
5
6
7
8
9
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
public class CommonsLoggingTest {
public static void main(String[] args) {
Log log = LogFactory.getLog(CommonsLoggingTest.class);
log.info("start...");
log.error("end...");
}
}

image-20230814202902551

image-20230814203325149

最佳实践

在开发阶段,始终使用Commons Logging接口来写入日志,并且开发阶段无需引入Log4j。如果需要把日志写入文件, 只需要把正确的配置文件和Log4j相关的jar包放入classpath,就可以自动把日志切换成使用Log4j写入,无需修改任何代码。