Java基础-异常
1.Java中的异常
异常处理方式
程序处理过程中会遇到各种各样的意外,例如打开的文件不存在、用户输入的数据格式不正确等,因此我们必须想办法保证程序的健壮性,你想到的 Java 都想到了,不然怎么说 Java 是一门健壮性强
的编程语言呢。
调用方如何获知调用失败的信息?有两种方法:
==方法一:约定返回错误码。==
例如,处理一个文件,如果返回0
,表示成功,返回其他整数,表示约定的错误码:
1 | int code = processFile("C:\\test.txt"); |
因为使用int
类型的错误码,想要处理就非常麻烦。这种方式常见于底层 C 函数
。
==方法二:在语言层面上提供一个异常处理机制。==
Java内置了一套异常处理机制,总是使用异常来表示错误。
异常是一种class
,因此它本身带有类型信息。异常可以在任何地方抛出,但只需要在上层捕获,这样就和方法调用分离了:
1 | try { |
Java的异常类
因为Java的异常是class
,它的继承关系如下:
1 | ┌───────────┐ |
从继承关系可知:Throwable
是异常体系的根,它继承自Object
。Throwable
有两个体系:Error
和Exception
,Error
表示严重的错误,程序对此一般无能为力,例如:
OutOfMemoryError
:内存耗尽NoClassDefFoundError
:无法加载某个ClassStackOverflowError
:栈溢出
而Exception
则是运行时的错误,它可以被捕获并处理。
某些异常是应用程序逻辑处理的一部分,应该捕获并处理。例如:
NumberFormatException
:数值类型的格式错误FileNotFoundException
:未找到文件SocketException
:读取网络失败
还有一些异常是程序逻辑编写不对造成的,应该修复程序本身。例如:
NullPointerException
:对某个null
的对象调用方法或字段IndexOutOfBoundsException
:数组索引越界
Exception
又分为两大类:
RuntimeException
以及它的子类;- 非
RuntimeException
(包括IOException
、ReflectiveOperationException
等等)
Java规定:
- 必须捕获的异常,包括
Exception
及其子类,但不包括RuntimeException
及其子类,这种类型的异常称为Checked Exception
。 - 不需要捕获的异常,包括
Error
及其子类,RuntimeException
及其子类。
注意:编译器对RuntimeException及其子类不做强制捕获要求,不是指应用程序本身不应该捕获并处理RuntimeException。是否需要捕获,具体问题具体分析。
如何捕获异常
捕获异常使用try...catch
语句,把可能发生异常的代码放到try {...}
中,然后使用catch
捕获对应的Exception
及其子类:
1 | import java.io.UnsupportedEncodingException; |
如果我们不捕获UnsupportedEncodingException
,会出现编译失败的问题。
编译器会报错,错误信息类似:unreported exception UnsupportedEncodingException; must be caught or declared to be thrown,并且准确地指出需要捕获的语句是return s.getBytes("GBK");
。意思是说,像UnsupportedEncodingException
这样的Checked Exception,必须被捕获。
这是因为String.getBytes(String)
方法定义是:
1 | public byte[] getBytes(String charsetName) throws UnsupportedEncodingException { |
在方法定义的时候,使用throws Xxx
表示该方法可能抛出的异常类型。调用方在调用的时候,必须强制捕获这些异常,否则编译器会报错。
在toGBK()
方法中,因为调用了String.getBytes(String)
方法,就必须捕获UnsupportedEncodingException
。我们也可以不捕获它,而是在方法定义处用throws表示toGBK()
方法可能会抛出UnsupportedEncodingException
,就可以让toGBK()
方法通过编译器检查:
1 | import java.io.UnsupportedEncodingException; |
上述代码仍然会得到编译错误,但这一次,编译器提示的不是调用return s.getBytes("GBK");
的问题,而是byte[] bs = toGBK("中文");
。因为在main()
方法中,调用toGBK()
,没有捕获它声明的可能抛出的UnsupportedEncodingException
。
修复方法是在main()
方法中捕获异常并处理:
1 | import java.io.UnsupportedEncodingException; |
可见,只要是方法声明的Checked Exception
,不在调用层捕获,也必须在更高的调用层捕获。所有未捕获的异常,最终也必须在main()
方法中捕获,不会出现漏写try
的情况。这是由编译器保证的。main()
方法也是最后捕获Exception
的机会。
如果是测试代码,上面的写法就略显麻烦。如果不想写任何try
代码,可以直接把main()
方法定义为throws Exception
:
1 | import java.io.UnsupportedEncodingException; |
因为main()
方法声明了可能抛出Exception
,也就声明了可能抛出所有的Exception
,因此在内部就无需捕获了。代价就是一旦发生异常,程序会立刻退出。
2.捕获异常
在Java中,凡是可能抛出异常的语句,都可以用try ... catch
捕获。把可能发生异常的语句放在try { ... }
中,然后使用catch
捕获对应的Exception
及其子类。
多catch语句
可以使用多个catch
语句,每个catch
分别捕获对应的Exception
及其子类。JVM 在捕获到异常后,会从上到下匹配catch
语句,匹配到某个catch
后,执行catch
代码块,然后不再继续匹配。
简单地说就是:多个catch
语句只有一个能被执行。例如:
1 | public static void main(String[] args) { |
存在多个catch
的时候,catch
的顺序非常重要:子类必须写在前面。例如:
1 | public static void main(String[] args) { |
对于上面的代码,UnsupportedEncodingException
异常是永远捕获不到的,因为它是IOException
的子类。当抛出UnsupportedEncodingException
异常时,会被catch (IOException e) { ... }
捕获并执行。
因此,正确的写法是把子类放到前面:
1 | public static void main(String[] args) { |
finally语句
无论是否有异常发生,如果我们都希望执行一些语句,例如清理工作,怎么写?
可以把执行语句写若干遍:正常执行的放到try
中,每个catch
再写一遍。例如:
1 | public static void main(String[] args) { |
上述代码无论是否发生异常,都会执行System.out.println("END");
这条语句。
那么如何消除这些重复的代码?Java的try ... catch
机制还提供了finally
语句,finally
语句块保证有无错误都会执行。上述代码可以改写如下:
1 | public static void main(String[] args) { |
注意finally
有几个特点:
finally
语句不是必须的,可写可不写;finally
总是最后执行。
如果没有发生异常,就正常执行try { ... }
语句块,然后执行finally
。如果发生了异常,就中断执行try { ... }
语句块,然后跳转执行匹配的catch
语句块,最后执行finally
。
可见,finally
是用来保证一些代码必须执行的。
某些情况下,可以没有catch
,只使用try ... finally
结构。例如:
1 | void process(String file) throws IOException { |
因为方法声明了可能抛出的异常,所以可以不写catch
。
捕获多种异常
如果某些异常的处理逻辑相同,但是异常本身不存在继承关系,那么就得编写多条catch
子句:
1 | public static void main(String[] args) { |
因为处理IOException
和NumberFormatException
的代码是相同的,所以我们可以把它两用|
合并到一起:
1 | public static void main(String[] args) { |
3.抛出异常
异常的传播
当某个方法抛出了异常时,如果当前方法没有捕获异常,异常就会被抛到上层调用方法,直到遇到某个try ... catch
被捕获为止:
1 | public class Main { |
printStackTrace()
对于调试错误非常有用,上述信息表示:NumberFormatException
是在java.lang.Integer.parseInt
方法中被抛出的,从下往上看,调用层次依次是:
main()
调用process1()
;process1()
调用process2()
;process2()
调用Integer.parseInt(String)
;Integer.parseInt(String)
调用Integer.parseInt(String, int)
。
查看Integer.java
源码可知,抛出异常的方法代码如下:
1 | public static int parseInt(String s, int radix) throws NumberFormatException { |
在IDEA中直接点击行号链接便可以跳转到异常发生位置。
抛出异常
当发生错误时,例如,用户输入了非法的字符,我们就可以抛出异常。
如何抛出异常?参考Integer.parseInt()
方法,抛出异常分两步:
- 创建某个
Exception
的实例; - 用
throw
语句抛出。
1 | void process2(String s) { |
实际上,绝大部分抛出异常的代码都会合并写成一行:
1 | void process2(String s) { |
如果一个方法捕获了某个异常后,又在catch
子句中抛出新的异常,就相当于把抛出的异常类型“转换”了:
1 | void process1(String s) { |
当process2()
抛出NullPointerException
后,被process1()
捕获,然后抛出IllegalArgumentException()
。
如果在main()
中捕获IllegalArgumentException
,我们看看打印的异常栈:
1 | public class Main { |
这说明新的异常丢失了原始异常信息,我们已经看不到原始异常NullPointerException
的信息了。
为了能追踪到完整的异常栈,在构造异常的时候,把原始的Exception
实例传进去,新的Exception
就可以持有原始Exception
信息。对上述代码改进如下:
1 | public class Main { |
注意到Caused by: Xxx
,说明捕获的IllegalArgumentException
并不是造成问题的根源,根源在于NullPointerException
,是在Main.process2()
方法抛出的。
在代码中获取原始异常可以使用Throwable.getCause()
方法。如果返回null
,说明已经是“根异常”了。有了完整的异常栈的信息,我们才能快速定位并修复代码的问题。
捕获到异常并再次抛出时,一定要留住原始异常,否则很难定位第一案发现场!
如果我们在try
或者catch
语句块中抛出异常,finally
语句是否会执行?例如:
1 | public class Main { |
第一行打印了catched
,说明进入了catch
语句块。第二行打印了finally
,说明执行了finally
语句块。
因此,在catch
中抛出异常,不会影响finally
的执行。JVM会先执行finally
,然后抛出异常。
异常屏蔽
如果在执行finally
语句时抛出异常,那么,catch
语句的异常还能否继续抛出?例如:
1 | public class Main { |
这说明finally
抛出异常后,原来在catch
中准备抛出的异常就“消失”了,因为只能抛出一个异常。没有被抛出的异常称为“被屏蔽”的异常(Suppressed Exception)。
在极少数的情况下,我们需要获知所有的异常。如何保存所有的异常信息?方法是先用origin
变量保存原始异常,然后调用Throwable.addSuppressed()
,把原始异常添加进来,最后在finally
抛出:
1 | public class Main { |
当catch
和finally
都抛出了异常时,虽然catch
的异常被屏蔽了,但是,finally
抛出的异常仍然包含了它:
通过Throwable.getSuppressed()
可以获取所有的Suppressed Exception
。绝大多数情况下,在finally
中不要抛出异常。因此,我们通常不需要关心Suppressed Exception
。
4.自定义异常
Java标准库定义的常用异常包括:
1 | Exception |
当我们在代码中需要抛出异常时,尽量使用JDK已定义的异常类型。例如,参数检查不合法,应该抛出IllegalArgumentException
:
1 | static void process1(int age) { |
在一个大型项目中,可以自定义新的异常类型,但是,保持一个合理的异常继承体系是非常重要的。
一个常见的做法是自定义一个BaseException
作为“根异常”,然后,派生出各种业务类型的异常。
BaseException
需要从一个适合的Exception
派生,通常建议从RuntimeException
派生:
1 | public class BaseException extends RuntimeException { |
其他业务类型的异常就可以从BaseException
派生:
1 | public class UserNotFoundException extends BaseException { |
自定义的BaseException
应该提供多个构造方法:
1 | public class BaseException extends RuntimeException { |
上述构造方法实际上都是原样照抄RuntimeException
。这样,抛出异常的时候,就可以选择合适的构造方法。通过IDE可以根据父类快速生成子类的构造方法。
5.NullPointerException
在所有的RuntimeException
异常中,Java程序员最熟悉的恐怕就是NullPointerException
了。
NullPointerException
即空指针异常,俗称NPE。如果一个对象为null
,调用其方法或访问其字段就会产生NullPointerException
,这个异常通常是由JVM抛出的,例如:
1 | public class Main { |
指针这个概念实际上源自C语言,Java语言中并无指针。我们定义的变量实际上是引用,Null Pointer更确切地说是Null Reference,不过两者区别不大。
处理NullPointerException
如果遇到NullPointerException
,我们应该如何处理?首先,必须明确,NullPointerException
是一种代码逻辑错误,遇到NullPointerException
,遵循原则是早暴露,早修复,严禁使用catch
来隐藏这种编码错误:
1 | // 错误示例: 捕获NullPointerException |
好的编码习惯可以极大地降低NullPointerException
的产生,例如:
成员变量在定义时初始化:
1 | public class Person { |
使用空字符串""
而不是默认的null
可避免很多NullPointerException
,编写业务逻辑时,用空字符串""
表示未填写比null
安全得多。
返回空字符串""
、空数组而不是null
:
1 | public String[] readLinesFromFile(String file) { |
这样可以使得调用方无需检查结果是否为null
。
如果调用方一定要根据null
判断,比如返回null
表示文件不存在,那么考虑返回Optional<T>
:
1 | public Optional<String> readFromFile(String file) { |
这样调用方必须通过Optional.isPresent()
判断是否有结果。
定位NullPointerException
如果产生了NullPointerException
,例如,调用a.b.c.x()
时产生了NullPointerException
,原因可能是:
a
是null
;a.b
是null
;a.b.c
是null
;
确定到底是哪个对象是null
以前只能打印这样的日志:
1 | System.out.println(a); |
从Java 14开始,如果产生了NullPointerException
,JVM可以给出详细的信息告诉我们null
对象到底是谁。我们来看例子:
1 | public class Main { |
可以在NullPointerException
的详细信息中看到类似... because "<local1>.address.city" is null
,意思是city
字段为null
,这样我们就能快速定位问题所在。
这种增强的NullPointerException
详细信息是Java 14新增的功能,但默认是关闭的,我们可以给JVM添加一个-XX:+ShowCodeDetailsInExceptionMessages
参数启用它:
1 | java -XX:+ShowCodeDetailsInExceptionMessages Main.java |
6.使用断言
断言(Assertion)是一种调试程序的方式。在Java中,使用assert
关键字来实现断言。
1 | double x = Math.abs(-123.45); |
语句assert x >= 0;
即为断言,断言条件x >= 0
预期为true
。如果计算结果为false
,则断言失败,抛出AssertionError
。
使用assert
语句时,还可以添加一个可选的断言消息:
1 | assert x >= 0 : "x must >= 0"; |
这样,断言失败的时候,AssertionError
会带上消息x must >= 0
,更加便于调试。
Java断言的特点是:断言失败时会抛出AssertionError
,导致程序结束退出。因此,断言不能用于可恢复的程序错误,只应该用于开发和测试阶段。
对于可恢复的程序错误,不应该使用断言。例如:
1 | void sort(int[] arr) { |
应该抛出异常并在上层捕获:
1 | void sort(int[] arr) { |
当我们在程序中使用assert
时,例如,一个简单的断言:
1 | public class Main { |
断言x
必须大于0
,实际上x
为-1
,断言肯定失败。执行上述代码,发现程序并未抛出AssertionError
,而是正常打印了x
的值。
这是怎么肥四?为什么assert
语句不起作用?
这是因为JVM默认关闭断言指令,即遇到assert
语句就自动忽略了,不执行。
要执行assert
语句,必须给Java虚拟机传递-enableassertions
(可简写为-ea
)参数启用断言。所以,上述程序必须在命令行下运行才有效果:
还可以有选择地对特定地类启用断言,命令行参数是:-ea:com.itranswarp.sample.Main
,表示只对com.itranswarp.sample.Main
这个类启用断言。或者对特定地包启用断言,命令行参数是:-ea:com.itranswarp.sample...
(注意结尾有3个.
),表示对com.itranswarp.sample
这个包启动断言。
实际开发中,很少使用断言。更好的方法是编写单元测试,后续我们会讲解JUnit
的使用。
7.JDK Logging
在编写程序的过程中,发现程序运行结果与预期不符,怎么办?当然是用System.out.println()
打印出执行过程中的某些变量,观察每一步的结果与代码逻辑是否符合,然后有针对性地修改代码。
代码改好了怎么办?当然是删除没有用的System.out.println()
语句了。如果改代码又改出问题怎么办?再加上System.out.println()
。
反复这么搞几次,很快大家就发现使用System.out.println()
非常麻烦。怎么办?
解决方法是使用日志
。
那什么是日志?日志就是Logging,它的目的是为了取代System.out.println()
。
输出日志,而不是用System.out.println()
,有以下几个好处:
- 可以设置输出样式,避免自己每次都写
"ERROR: " + var
; - 可以设置输出级别,禁止某些级别输出。例如,只输出错误日志;
- 可以被重定向到文件,这样可以在程序运行结束后查看日志;
- 可以按包名控制日志级别,只输出某些包打的日志;
- 可以……
总之就是好处很多啦。那如何使用日志?
因为Java标准库内置了日志包java.util.logging
,我们可以直接用。先看一个简单的例子:
1 | import java.util.logging.Logger; |
对比可见,使用日志最大的好处是,它自动打印了时间、调用类、调用方法等很多有用的信息。
再仔细观察发现,4条日志,只打印了3条,logger.fine()
没有打印。这是因为,日志的输出可以设定级别。JDK的Logging定义了7个日志级别,从严重到普通:
- SEVERE
- WARNING
- INFO
- CONFIG
- FINE
- FINER
- FINEST
因为默认级别是INFO,因此,INFO级别以下的日志,不会被打印出来。使用日志级别的好处在于,调整级别,就可以屏蔽掉很多调试相关的日志输出。使用Java标准库内置的Logging有以下局限:
- Logging系统在JVM启动时读取配置文件并完成初始化,一旦开始运行
main()
方法,就无法修改配置; - 配置不太方便,需要在JVM启动时传递参数
-Djava.util.logging.config.file=<config-file-name>
。
因此,Java标准库内置的Logging使用并不是非常广泛。更方便的日志系统我们稍后介绍。
8.Commons Logging
和Java标准库提供的日志不同,Commons Logging是一个第三方日志库,它是由Apache创建的日志模块。
Commons Logging的特色是,它可以挂接不同的日志系统,并通过配置文件指定挂接的日志系统。默认情况下,Commons Loggin自动搜索并使用Log4j(Log4j是另一个流行的日志系统),如果没有找到Log4j,再使用JDK Logging。
使用Commons Logging只需要和两个类打交道,并且只有两步:
第一步,通过LogFactory
获取Log
类的实例; 第二步,使用Log
实例的方法打日志。
1 | import org.apache.commons.logging.Log; |
运行上述代码,肯定会得到编译错误,类似error: package org.apache.commons.logging does not exist
(找不到org.apache.commons.logging
这个包)。因为Commons Logging是一个第三方提供的库,所以,必须先把它下载下来。下载后,解压,找到commons-logging-1.2.jar
这个文件,再把Java源码Main.java
放到一个目录下,例如work
目录:
1 | work |
然后用javac
编译Main.java
,编译的时候要指定classpath
,不然编译器找不到我们引用的org.apache.commons.logging
包。编译命令如下:
1 | javac -cp commons-logging-1.2.jar Main.java |
如果编译成功,那么当前目录下就会多出一个Main.class
文件:
1 | work |
现在可以执行这个Main.class
,使用java
命令,也必须指定classpath
,命令如下:
1 | java -cp .;commons-logging-1.2.jar Main |
注意到传入的classpath
有两部分:一个是.
,一个是commons-logging-1.2.jar
,用;
分割。.
表示当前目录,如果没有这个.
,JVM不会在当前目录搜索Main.class
,就会报错。如果在Linux或macOS下运行,注意classpath
的分隔符不是;
,而是:
:
1 | java -cp .:commons-logging-1.2.jar Main |
运行结果如下:
Commons Logging定义了6个日志级别:
- FATAL
- ERROR
- WARNING
- INFO
- DEBUG
- TRACE
默认级别是INFO
。
使用Commons Logging时,如果在静态方法中引用Log
,通常直接定义一个静态类型变量:
1 | // 在静态方法中引用Log: |
在实例方法中引用Log
,通常定义一个实例变量:
1 | // 在实例方法中引用Log: |
注意到实例变量log的获取方式是LogFactory.getLog(getClass())
,虽然也可以用LogFactory.getLog(Person.class)
,但是前一种方式有个非常大的好处,就是子类可以直接使用该log
实例。例如:
1 | // 在子类中使用父类实例化的log: |
由于Java类的动态特性,子类获取的log
字段实际上相当于LogFactory.getLog(Student.class)
,但却是从父类继承而来,并且无需改动代码。
此外,Commons Logging的日志方法,例如info()
,除了标准的info(String)
外,还提供了一个非常有用的重载方法:info(String, Throwable)
,这使得记录异常更加简单:
1 | try { |
9.Log4j
前面介绍了Commons Logging,可以作为“日志接口”来使用。而真正的“日志实现”可以使用Log4j。
Log4j是一种非常流行的日志框架,最新版本是2.x。
Log4j是一个组件化设计的日志系统,它的架构大致如下:
1 | log.info("User signed in."); |
当我们使用Log4j输出一条日志时,Log4j自动通过不同的Appender把同一条日志输出到不同的目的地。例如:
- console:输出到屏幕;
- file:输出到文件;
- socket:通过网络输出到远程计算机;
- jdbc:输出到数据库
在输出日志的过程中,通过Filter来过滤哪些log需要被输出,哪些log不需要被输出。例如,仅输出ERROR
级别的日志。最后,通过Layout来格式化日志信息,例如,自动添加日期、时间、方法名称等信息。
上述结构虽然复杂,但我们在实际使用的时候,并不需要关心Log4j的API,而是通过配置文件来配置它。
以XML配置为例,使用Log4j的时候,我们把一个log4j2.xml
的文件放到classpath
下就可以让Log4j读取配置文件并按照我们的配置来输出日志。下面是一个配置文件的例子:
1 |
|
虽然配置Log4j比较繁琐,但一旦配置完成,使用起来就非常方便。对上面的配置文件,凡是INFO
级别的日志,会自动输出到屏幕,而ERROR
级别的日志,不但会输出到屏幕,还会同时输出到文件。并且,一旦日志文件达到指定大小(1MB),Log4j就会自动切割新的日志文件,并最多保留10份。
IDEA中把上面的log4j2.xml
文件放入classpath
中:
有了配置文件还不够,因为Log4j也是一个第三方库,我们需要从这里下载Log4j,解压后,把以下3个jar包放到classpath
中:
- log4j-api-2.x.jar
- log4j-core-2.x.jar
- log4j-jcl-2.x.jar
因为Commons Logging会自动发现并使用Log4j,所以,把上一节下载的commons-logging-1.2.jar
也放到classpath
中。
要打印日志,只需要按Commons Logging的写法写,不需要改动任何代码,就可以得到Log4j的日志输出,类似:
1 | import org.apache.commons.logging.Log; |
最佳实践
在开发阶段,始终使用Commons Logging
接口来写入日志,并且开发阶段无需引入Log4j。如果需要把日志写入文件, 只需要把正确的配置文件和Log4j相关的jar包放入classpath
,就可以自动把日志切换成使用Log4j写入,无需修改任何代码。